Sweet Corn

European corn borer (ECB) adults are appearing in blacklight traps in all parts of NJ, although the majority of catches are from southwestern counties (see ECB Map). These moths are well ahead of schedule due to the earlier warm, dry conditions. As yet, no larval infestations have been discovered. Expect to see the first signs of ECB larval feeding on whorl stage corn within the next week in southern counties.

The highest nightly ECB catches for the previous week are as follows:
- Shirley 7
- Cedarville 1
- New Egypt 1
- Crosswicks 3
- East Vineland 1
- Pedricktown 1
- Milltown 2
- Eldora 1
- Pennington 1
- Allentown 1
- Georgetown 1
- Woodstown 1

A few corn earworm moths (CEW) have been captured in blacklight traps in Cape May County as well as Burlington and Somerset counties (see CEW Map). These moths represent overwintered individuals. There may be a heavier early population of this pest due to the mild winter. For now, this pest is not a serious threat to sweet corn, as plantings are not in silk. As silks begin to appear, pay close attention to CEW catches in local blacklight traps, and treat silking plantings accordingly.

The highest nightly CEW catches for the previous week are as follows:
- Cinnaminson 1
- South Branch 1
- East Vineland 1
- Eldora 1
- Green Creek 1

Cole Crops

Egg laying by imported cabbage butterflies (ICW), and diamondback moth (DBM) is occurring at this time, and will continue as warm weather permits their activity. Infestations of both pests have been found in the central counties, and are certainly present further south. Scout plantings weekly. Check 5 consecutive plants each in 10 random locations throughout the planting, paying particular attention to the innermost leaves where ICW often feed. Consider treating if caterpillars are found on 10% or more plants that are in the 0-9 true leaf stage. From 9-leaf to the early head stage (in broccoli, cauliflower and cab-
Bagel infestations up to 20% may be tolerated. Once heads begin to form, a 5% threshold should be observed to protect the marketable portion of the plant. For leafy greens such as collards and kale, 10% plants infested is the threshold throughout.

Crucifer flea beetle is active on many plantings, particularly when conditions are warm. When scouting cole crops for caterpillar pests, check for the presence of flea beetles. Consider treating if flea beetles are present on 50% or more plants, and feeding injury is evident on the plants. Be sure to monitor newly emerged or transplanted fields for the presence of this pest. In general, plants like arugula and mustard (those with a “hotter” flavor) are more favorable to flea beetles.

Tomatoes

Be aware that the practices of pruning and tying tomato plants in the field can spread **bacterial pathogens** if they are present on any of the plants. It is advisable to use latex gloves while pruning, and discard them at the end of each row. Using new gloves with each new row will help limit spread in the field. Additionally, tying wands may be dipped in a bleach solution at row end as well for the same reason. Bacterial infections (speck, spot and canker) typically appear first as very dark lesions on leaf edges or interior tissue. Foliage of any age may be affected. Various chemical applications may also be used to help suppress bacterial infections (see the 2012 Commercial Vegetable Production Recommendations), and these should be considered even in the absence of symptoms.

Brown Marmorated Stinkbug (BMSB)

The first BMSB were captured in a blacklight in Georgetown (Burlington County) this past week. Dr. George Hamilton reports that low numbers of BMSB adults were found in beat samples from peach trees at the Cream Ridge Research Station in Monmouth County. As adult captures increase, maps will be produced to show where activity is highest. Information on scouting, crop injury and control will also be included.
The DMIs (Demethylation Inhibitors) or Sterol Biosynthesis Inhibiting fungicides belong to FRAC code 3, which include the triazoles and imidazoles. Some of these fungicides are commonly known as Tilt (propiconazole), Rally (myclobutanil), Folicur (tebuconazole), and Procure (triflumizole). SBI’s work by inhibiting the biosynthesis of ergosterol, which is a major component of the plasma membrane of certain fungi and needed for fungal growth. Resistance by fungi to the SBI fungicides has been characterized and is generally known to be controlled by the accumulation of several independent mutations, or what is known as ‘continuous selection’ or ‘shifting’, in the fungus.

In any given field population the sensitivity to the SBI fungicide by the fungus may range from extremely high (highly sensitive, i.e. will be controlled by fungicide) to moderate (partially sensitive) or low (mostly resistant to fungicide). This type of resistance is also known as quantitative resistance. With quantitative resistance there are different levels of resistance to the fungicide due to independent mutations, which, is unlike the target mutations that occur in qualitative resistance associated with the QoI fungicides (FRAC code 11). Because different levels of resistance to the SBI fungicide may exist in the field, the fungal population may behave differently to different rates of the SBI fungicide being applied. Hence, it is suggested that using a higher rate of a SBI fungicide, may improve control when lower rates have failed. For example, let’s say that a Powdery mildew population on pumpkin has 25% high, 50% moderate, and 25% low sensitivity to a SBI fungicide. If fungicide is applied at the low rate, only 25% of the population (highly sensitive) may be controlled. Whereas, if the high rate was used, 75% of population may have been controlled. The main point is that if low rates of SBI fungicides have been used and control seems to be weakening, bumping to a higher rate may improve control.

Unfortunately, it is difficult to determine what proportion of the powdery mildew population is sensitive or not sensitive by looking at the field until you have begun spraying. The best advice, if you are using low rates and think those rates are not working like you feel, the rate should be bumped up to the high rate the next time the fungicide is sprayed, and if the high rate doesn’t work it may be safe to assume the fungal population has grown mostly resistant. Importantly, if the high rate fails, whether you bumped up to a high rate or started with one, and control does not seem adequate, do not continue to use the fungicide.

Recognizing if and when fungicide chemistries are failing and when fungicide resistance is developing is critical to producing successful crops and why scouting on a regular basis, at least before and after each fungicide application, is important. Regular scouting can help reduce unwarranted and ineffective fungicide applications and help reduce wasted costs. Remember to always tank mix SBI fungicides with protectant (M) fungicides (i.e., chlorothalonil) to help reduce the chances for fungicide resistance developing. Always apply SBI fungicides according to label rates and resistant management recommendations and always be aware of the fungicide rates you are applying.
Vegetable Disease Update
Andy Wyenandt, Ph.D., Specialist in Vegetable Pathology

✔ **Lettuce – Bottom Rot/Drop** – Spring lettuce season is beginning and growers should take precautions to help control Bottom rot (*Rhizoctonia*) and Lettuce drop (*Sclerotinia*) which may cause potential problems. For Bottom rot, apply Endura 70W (boscalid, FRAC code 7) at 8.0 to 11.0 oz 70W/A, or iprodione (FRAC code 2) at 1.5 to 2.0 lb 50WP/A or OLF should be applied one week after transplanting or thinning and 10 and 20 days later. For Lettuce drop, apply Endura (FRAC code 7) at 8.0 to 11.0 oz 70WG/A or iprodione (FRAC code 2) at 1.5 to 2.0 lb/A, or Quadris (azoxystrobin, 11) at 0.4 oz - 0.80 fl oz/1000 row ft. 2.08SC beginning one week after transplanting or thinning and again at 10 and 20 days later. For more information on control of Bottom rot and Lettuce drop and other important diseases of lettuce please see the 2012 New Jersey Commercial Vegetable Production Recommendations Guide.

✔ **Parsley – Septoria Blight /Bacterial (blight) leaf spot** – Leaf spots caused by Septoria blight are easily distinguished by small, angular to round leaf spots with grayish-brown centers with a definitive dark, brown margin. Numerous black fruiting bodies develop in the center of lesions. Septoria blight is spread by wind-driven rain, heavy dews and overhead irrigation. Workers and equipment may also spread the disease during wet conditions. Best management practices include i) proper crop rotations of at least 2 years and by using clean or treated seed ii) scouting fields early for symptom development iii) keeping workers and equipment out of fields with wet foliage iv) plowing under residue of harvested crop and avoid planting in fields adjacent or near previously infected fields. Rotate applications of Quadris (azoxystrobin, 11) at 6.0 to 15.5 fl oz 2.08SC/A or Cabrio (pyraclostrobin, 11) at 12.0 - 14.0 oz 20EG/A or Switch (cyprodinil + fludioxonil, 9 + 12) at 11.0 - 14.0 oz 62.5WG/A, or Pristine (pyraclostrobin + boscalid, 11 + 7) at 18.5 to 23.0 oz 38WG/A, or Captevate (captafol + fenhexamid, M3 + 17) at 3.5 to 5.25 lb 68WDG/A. For subsequent applications, alternate: captan (M3) at 4.0 lb 50WP/A plus Abound (azoxystrobin, 11) at 6.0 to 15.5 fl oz 2.08SC/A, or Cabrio (pyraclostrobin, 11) at 12.0 - 14.0 oz 20EG/A plus captan (M3) at 4.0 lb 50WP/A, or Switch (cyprodinil, 9) at 11.0 - 14.0 oz 62.5WG/A, or Pristine (pyraclostrobin + boscalid, 11 + 7), Cabrio (pyraclostrobin, 11) or Abound (azoxystrobin, 11) before switching to another fungicide chemistry.

✔ **Strawberry – Botrytis (Gray Mold) and Blossom blight** – can cause serious losses in strawberry plantings in high tunnels and the field if not controlled properly. Development is favored by moderate temperatures (59 to 77°F) with prolonged periods of high relative humidity and surface wetness. Control of Gray mold begins with preventative fungicide applications. Apply at 5 to 10 percent bloom and every 10 days until harvest. During periods of excessive moisture, spray intervals of 5 to 7 days may be necessary. Rotate fungicide chemistries to aid fungicide resistance management.

Application #1: Pristine (pyraclostrobin + boscalid, 11 + 7) at 18.5 to 23.0 oz. 38WG/A
Application #2: captan (M3) at 4.0 lb 50WP/A, Captevate (captafol + fenhexamid, M3 + 17) at 3.5 to 5.25 lb 68WDG/A, or Switch (cyprodinil, 9) at 11.0 to 14.0 oz. 62.5WG/A
Application #3: Pristine (pyraclostrobin + boscalid, 11 + 7) at 18.5 to 23.0 oz. 38WG/A
For subsequent applications, rotate between two or more of the following fungicides: Captan (M3) at 4.0 lb 50WP/A, or Cabrio (pyraclostrobin, 11) at 12.0 - 14.0 oz 20EG/A, or Switch (cyprodinil + fludioxonil, 9 + 12) at 11.0 to 14.0 oz. 62.5WG/A, or Pristine (pyraclostrobin + boscalid, 11 +7) at 18.5 to 23.0 oz 38 WG/A, or Switch (cyprodinil + fludioxonil, 9 + 12) at 11.0 - 14.0 oz 62.5WG + Abound (azoxystrobin, 11), or Switch (cyprodinil + fludioxonil, 9 + 12) at 11.0 - 14.0 oz 62.5WG + Cabrio (pyraclostrobin, 11) at 12.0 - 14.0 oz 20EG/A.

See Disease Update on page 5
Disease Update from page 4

✔ Spinach (White Rust and Downy Mildew) - Prior to symptom development, apply the following on a 7 to 10 day schedule: Quadris (azoxystrobin, 11) at 12.0 to 15.5 fl oz 2.08SC/A, or Cabrio (pyraclostrobin, 11) at 12.0 to 16.0 oz 20EG/A, or Reason (fenimidalone, 11) at 5.5 to 8.2 fl oz 500SC/A, or Tanos (famoxodone + cymoxanil, 11 + 27) at 8.0 to 10.0 oz 50W/A. Rotate to one of the following fungicides: Ranman (cyazofamid, 21) at 2.75 fl oz 400F/A, Revus (manidipropamid, 40) at 8.0 fl oz 2.08F, or Presidio (fluopicolide, 43) at 3.0 to 4.0 fl oz 4SC/A, or Actigard (acibenzolar-S-methyl, P) at 0.50 to 0.75 oz 50WG/A, or Aliette (fosetyl Al, 33) at 3.0 lb 80WDG/A, or fixed copper (FRAC code M1) at labeled rates (Copper containing fungicides may cause some phytotoxicity), or Ridomil Gold Copper (mefenoxam + copper, 4 + M1) at 2.5 lb 65WP/A (on 14-day schedule). For more information please see the 2012 New Jersey Commercial Vegetable Production Recommendations Guide.

✔ Tomato – Bacterial spot and speck

– Tomato transplants with suspected symptoms can be treated with streptomycin (Agri-Mycin 17, Agri-Strep, 25) at 1 lb/100 gallons, or 1.25 teaspoon per gallon every 4 to 5 days prior to transplanting. Additionally, Kocide 3000 (copper hydroxide, FRAC code M1) has a greenhouse label for speck and spot control in the greenhouse. Apply ½ to 1.5 TBSP per 1000 sq ft. every 5 to 10 days. Remember, phytoxicity is an important issue when apply copper in enclosed structures, see label for cautions, restrictions and liabilities. After transplanting, apply Actigard at 0.33 oz 50WG/A (see label for use), or fixed copper (M1) at 1 lb a.i./A plus a mancozeb (Dithane, Manzate, Penncozeb, M3) at 1.5 lb 75DF or OLF, or ManKocide (M1 + M3) at 2.5 to 5.0 lb 61WP/A on a 7 day schedule.

Disinfecting Flats for Transplants

Gordon Johnson, Extension Vegetable & Fruit Specialist, University of Delaware Cooperative Extension

Reprinted from Weekly Crop Update, May 4, 2012, University of Delaware Cooperative Extension

We have seen some problems where excess bleach used for disinfecting greenhouse flats caused damage to transplants. The following is some information from the University of Massachusetts on using bleach for disinfecting flats: “When used properly, chlorine is an effective disinfectant and has been used for many years by growers. A solution of chlorine bleach and water is short-lived and the half-life (time required for 50 percent reduction in strength) of a chlorine solution is only two hours. After two hours, only one-half as much chlorine is present as was present at first. After four hours, only one-fourth is there, and so on. To ensure the effectiveness of chlorine solutions, it should be prepared fresh just before each use. The concentration normally used is one part of household bleach (5.25 percent sodium hypochlorite) to nine parts of water, giving a final strength of 0.5 percent. Chlorine is corrosive. Repeated use of chlorine solutions may be harmful to plastics or metals. Objects to be sanitized with chlorine require 30 minutes of soaking and then should be rinsed with water. Bleach should be used in a well-ventilated area. It should also be noted that bleach is phytotoxic to some plants.”

Do not use straight bleach for disinfecting flats. Bleach contains sodium and chloride. Excess chlorine can be toxic to some plants. With excess chlorine, plants may wilt when soil moisture seems adequate, foliage has an abnormal dark blue/green color and individual leaves are dull and leathery, with scorching on leaf edges and premature yellowing of the oldest leaves. Sodium toxicity is seen as marginal leaf burn on the oldest leaves.

Bat Colony Reporting

Since 2006, over 5.7 million bats have died from White Nose Syndrome, a devastating disease that destroys their wing tissue. Despite many inaccurate myths about bats, they are important providers of ecological services, particularly as insect pest managers.

A single bat can consume up to 3,000 mosquitoes every night!

Please help us monitor bat populations in New Jersey! If you have a summer bat colony on your property (in your attic, barn, bat house, or trees), then please let us know by filling out the online reporting form below. Someone from the Rutgers Wildlife Resources Program will contact you to learn more about your bat colony and help conserve these beneficial animals.

Visit: http://wildlife.rutgers.edu/bats/reporting.asp.
Preparing Your Farm Food Safety Plan
Part 4: General Questions – Traceback, Pesticide Use, and Self-Audit
Meredith Melendez, Mercer County Senior Program Coordinator and Wesley Kline, Ph.D., Cumberland County Agricultural Agent

The purpose of the General Questions portion of your farm food safety plan is to cover the broad details of your plan. Who is responsible and how to reach them, worker health and hygiene, pesticide usage, and traceability are the topics that should be covered. Suggested wording for the last portion of your plan, traceback, which may work for your farm food safety plan is given below.

Traceback
The grower needs to be able to trace their product one step forward (to the buyer) and one step back (to the field). This cannot prevent an outbreak, but can help locate the source of the problem. The ability to trace your product is a key component of your farm food safety plan and necessary to pass a third-party audit. Wholesale growers are required to mark each container so that final purchaser will contain the necessary information to traceback the product to its farm of origin.
✔ Your plan must include a written traceback procedure.
✔ Harvest dates, specific field, product location within the field or orchard, number of packages within a lot, packing and shipping date and harvest crew records should be kept.
✔ The farm name and address needs to be on all boxes
✔ Each container must contain some type of identification that will maintain its integrity throughout the harvesting and marketing process. This can be accomplished with stickers, stamps or may be handwritten.
✔ The coding system is available for review.

Getting Ready for an Audit by Conducting a Self-Audit
A self-audit is not required for the USDA GAP’s audit. Conducting a self-audit can be a great way to determine if you are ready for a farm food safety audit. The USDA GAP’s Audit Verification Checklist is the checklist that an auditor will use when conducting an official audit of your farm, and you can utilize this same checklist for your self-audit. This checklist covers all aspects of the audit and will allow you to review the records, documents and policies needed for your farm food safety plan. It can also be a helpful tool to use during the process of creating your farm food safety plan. You may contact Wes Kline (wkline@aesop.rutgers.edu or 856-451-2800, ext. 1) or Meredith Melendez (Melendez@aesop.rutgers.edu or 609-989-6830) if you need a copy of this checklist.

Next week: Keeping Farm Food Safety Logs.

NRCS Announces Water Quality Initiative in S. Jersey Watersheds
Agricultural Producers located in priority watersheds will be able to participate

State Conservationist Donald Pettit of USDA’s Natural Resources Conservation Service (NRCS) announced the launch of a new National Water Quality Initiative that will help improve three impaired waterways in New Jersey. State agencies, partners, and NRCS’ State Technical Committee helped select the Upper Cohansey River, Upper Salem River and Upper Alloway Creek Watersheds as the focus of the initiative in the Garden State. NRCS will manage the initiative by making financial assistance available to farmers and forest landowners to install conservation practices that protect water quality in the priority watersheds.

“The Water Quality Initiative will further NRCS’ partnership efforts to improve water quality using voluntary actions on private lands,” Pettit said. “This initiative is a focused approach in areas facing significant natural resource challenges. It bolsters the positive results of landscape conservation initiatives NRCS and its partners already have underway.”

Using funds from the Environmental Quality Incentives Program, NRCS will provide funding and advice to producers to install conservation practices such as cover crops, filter strips and terraces in watersheds with impairments where the federal investment can make a difference to improve water quality.

“American farmers are good stewards of the environment, especially when they have the tools they need to protect or improve fish and wildlife habitat and water quality,” said NRCS Chief Dave White. “We look forward to collaborating with producers in key watersheds to help them have a positive impact on streams with impaired water quality.”

The three New Jersey watersheds selected for this initiative are located in

See Watersheds on page 7
Weekly Weather Summary
Keith Arnesen, Ph.D., Agricultural Meteorologist

Temperatures averaged above normal north and near normal central and south, averaging 58 degrees north, 58 degrees central, and 59 degrees south. Extremes were 84 degrees at Trenton on the 5th and 30 degrees at Newton on the 1st. Weekly rainfall averaged 1.07 inches north, 1.34 inches central, and 0.35 inches south. The heaviest 24 hour total reported was 0.84 inches at Freehold on the 2nd to 3rd. Estimated soil moisture, in percent of field capacity, this past week averaged 98 percent north, 95 percent central and 89 percent south. Four inch soil temperatures averaged 50 degrees north, 55 degrees central and 55 degrees south.

Weather Summary for the Week Ending 8 am Monday 5/7/12

<table>
<thead>
<tr>
<th>WEATHER STATIONS</th>
<th>RAINFALL</th>
<th>TEMPERATURE</th>
<th>DD BASE50</th>
<th>MON %FC</th>
</tr>
</thead>
<tbody>
<tr>
<td>BELVIDERE BRIDGE</td>
<td>.86</td>
<td>-3.63</td>
<td>1</td>
<td>93</td>
</tr>
<tr>
<td>CANOE BROOK</td>
<td>missing</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHARLOTTEBURG</td>
<td>1.14</td>
<td>-3.99</td>
<td>3</td>
<td>96</td>
</tr>
<tr>
<td>FLEMINGTON</td>
<td>1.02</td>
<td>-2.93</td>
<td>3</td>
<td>93</td>
</tr>
<tr>
<td>NEWTON</td>
<td>1.26</td>
<td>-2.92</td>
<td>3</td>
<td>93</td>
</tr>
<tr>
<td>FREEHOLD</td>
<td>1.38</td>
<td>-3.08</td>
<td>1</td>
<td>93</td>
</tr>
<tr>
<td>LONG BRANCH</td>
<td>1.98</td>
<td>-1.97</td>
<td>3</td>
<td>95</td>
</tr>
<tr>
<td>NEW BRUNSWICK</td>
<td>1.26</td>
<td>-2.27</td>
<td>0</td>
<td>94</td>
</tr>
<tr>
<td>TOMS RIVER</td>
<td>.66</td>
<td>-3.47</td>
<td>1</td>
<td>89</td>
</tr>
<tr>
<td>TRENTON</td>
<td>1.40</td>
<td>-2.39</td>
<td>2</td>
<td>85</td>
</tr>
<tr>
<td>CAPE MAY COURT HOUSE</td>
<td>.08</td>
<td>-2.32</td>
<td>-2</td>
<td>80</td>
</tr>
<tr>
<td>DOWNSTOWN</td>
<td>.31</td>
<td>-3.79</td>
<td>-1</td>
<td>81</td>
</tr>
<tr>
<td>HAMMONTON</td>
<td>.62</td>
<td>-2.69</td>
<td>1</td>
<td>81</td>
</tr>
<tr>
<td>POMONA</td>
<td>.34</td>
<td>-2.48</td>
<td>0</td>
<td>76</td>
</tr>
<tr>
<td>SEABROOK</td>
<td>.38</td>
<td>-1.86</td>
<td>1</td>
<td>83</td>
</tr>
<tr>
<td>SOUTH HARRISON</td>
<td>.50</td>
<td>-2.59</td>
<td>NA NA</td>
<td></td>
</tr>
</tbody>
</table>

Salem and Cumberland Counties and have documented phosphorus and sediment impairments. While the land use in these areas is varied, the majority of land is in agricultural production, with the Upper Cohansey watershed at 68% of its land area in agriculture.

NRCS accepts applications for financial assistance on a continuous basis throughout the year. For this initiative, NRCS has established a ranking period that closes June 15, 2012. Applications received by that date will be reviewed and ranked for funding consideration. This summer, NRCS will notify all applicants of the results of the rankings and begin developing contracts with selected applicants.

Since 1935, NRCS’ nationwide conservation delivery system works with private landowners to put conservation on the ground based on specific, local conservation needs, while accommodating state and national interests. For more information about the Water Quality Initiative and NRCS’ programs, initiatives and services in New Jersey, visit us online at www.nj.nrcs.usda.gov.

Filter strips like this one protect water quality by slowing down and filtering runoff before it reaches nearby waterways. NRCS will help eligible applicants install filter strips and other conservation practices to protect water quality through the Water Quality Initiative in Salem and Cumberland Counties.
PLANT & PEST ADVISORY
VEGETABLE CROPS EDITION CONTRIBUTORS

Rutgers NJAES Cooperative Extension Specialists
Gerald M. Ghidu, Ph.D., Vegetable Entomology
George Hamilton, Ph.D., Pest Management
Joseph R. Heckman, Ph.D., Soil Fertility
Bradley A. Majek, Ph.D., Weed Science
Andy Wyenandt, Ph.D., Vegetable Pathology

Rutgers NJAES-CE County Agricultural Agents
Atlantic, Richard W. VanVranken (609-625-0056)
Burlington, Raymond J. Samulis (609-265-5050)
Cape May, Jenny Carleo (609-465-5115)
Cumberland, Wesley Kline, Ph.D. (856-451-2800)
Gloucester, Michelle Infante-Casella (856-307-6450)
Hunterdon, Winfred P. Cowgill, Jr. (908-788-1338)
Middlesex, William T. Hlubik (732-398-5260)
Monmouth, Bill Sciarappa, Ph.D. (732-431-7260)
Morris, Peter J. Nitzsche (973-285-8300)
Passaic, Elaine Fogerty, Agric. Assistant (973-305-5740)
Salem (856-769-0090)
Warren, William H. Tietjen (908-475-6505)

Vegetable IPM Program (732-932-9802)
Joseph Ingerson-Mahar, Vegetable IPM Coordinator
Kristian E. Holmstrom, Research Project Coordinator II

Newsletter Production
Jack Rabin, Associate Director for Farm Services, NJAES
Cindy Rovins, Agricultural Communications Editor

Pesticide User Responsibility: Use pesticides safely and follow instructions on labels. The pesticide user is responsible for proper use, storage and disposal, residues on crops, and damage caused by drift. For specific labels, special local-needs label 24(c) registration, or section 18 exemption, contact RCE in your County.

Use of Trade Names: No discrimination or endorsement is intended in the use of trade names in this publication. In some instances a compound may be sold under different trade names and may vary as to label clearances.

Reproduction of Articles: RCE invites reproduction of individual articles, source cited with complete article name, author name, followed by Rutgers Cooperative Extension, Plant & Pest Advisory Newsletter.

The Vegetable Crops On-Line Resource Center website is a dedicated source for information on production, insect, weed and disease management, food safety, marketing and more: www.njveg.rutgers.edu

For back issues of the Plant & Pest Advisory: www.rce.rutgers.edu/pubs/plantandpestadvisory