USDA Releases a New Plant Hardiness Zone Map
Jim Johnson, Area Nursery Crop Agent, Cumberland County

The 2012 USDA Plant Hardiness Zone Map is available and replaces the previous version dating back to 1990. It can be found on their website at http://planthardiness.ars.usda.gov/PHZMWeb/. The map was developed to indicate the average annual minimum winter temperatures and is divided into 10°F zones. It does not present the lowest temperatures that may be experienced in the hardiness zone. The new map is based on temperature monitoring over a 30-year period from 1976 through 2005 while the 1990 version used information from 1974 through 1986.

The new maps are designed for the internet and are not available in print form. For those with a high-speed internet connection, click the button named “Interactive Map” to take full advantage of the site’s capabilities. If the internet connection is slower, static images can be loaded by clicking on the state map desired. Images of state, regional and national maps are also available to download and print in a number of sizes by clicking the “Map and Data Downloads” button.

From the home page of the website, one can easily obtain the specific hardiness zone by entering the zip code. In the interactive map, one can enter the zip code and the map will zoom to that area or the zoom tool can be used to find the area of interest. The map can then be viewed by terrain, road map or a satellite image. Change the zone transparency to see a little less of the zone color and more of the base image.

While writers claim that the new plant hardiness zone map supports the view of global warming trend, USDA specifically states, “changes in zones are not reliable evidence of whether there has been global warming”. Boundaries of the zones have changed but changes have, at least in part, resulted from additional data provided by more reporting stations over a longer period of time and more sophisticated mapping methods and algorithms. Zones are generally about a half zone warmer but some are cooler than previously reported. Check out the article on “mapmaking” on the USDA website under the “About” button.

What can the map do for you? Most woody plants have been tested for hardiness so check it out prior to making plant purchases. While there are microclimate locations that can support warmer hardiness zone plant material, the new map is a good guide for plant performance under local, low temperature conditions.
Pink and Gray Snow Mold

We have seen very little snow molds on golf and landscape turf due to the very warm winter. Gray snow mold, caused by the fungus *Typhula incarnata*, has been almost non-existent since this disease needs extended periods of snow cover (> six weeks) to develop. However, pink snow mold, caused by the fungus *Microdochium nivale*, prefers cold, damp weather (e.g., saturated, unfrozen ground between 30 and 50°F) independent of snow cover.

Pink snow mold usually is represented by small (1 to 3 inch) circular patches that are at first an orange-brown color, but later fade to a reddish brown and then a light gray to tan color. Unlike gray snow mold, no sclerotia are present with pink snow mold, but infested leaf tissue is often covered with a fluffy mass of white mycelium which turns a pinkish to salmon color as spores are produced in response to sunlight.

Pink snow mold can continue to cause damage during cool wet weather in the spring. If new infections develop apply Banner, Chipco 26GT, chlorothalonil, Compass, ConSyst, Curalan, Disarm, Eagle, Headway, Heritage, Insignia, Instrata, Medallion, Spectro, Tartan, Tourney, Trinity, Triton, thiophanate-methyl (e.g., 3336), Tourney, Trinity, Triton, or vinclozolin. To prevent a reoccurrence of pink and gray snow mold next fall, apply any of these fungicides on a preventive basis in early to mid-November and then repeat in late-January if the snow cover recedes. PCNB should not be used after January 15 due to its long residual activity (> three months) and the possibility of phytotoxicity during warm weather.

Yellow Patch and Brown Ring Patch

Yellow patch, often referred to as cool season brown patch, is apparent on a few golf courses at this time. It has not been nearly as common as last winter due to the warmer temperatures we experienced in 2012. Unlike brown patch which occurs in the summer, yellow patch (caused by *Rhizoctonia cerealis*) thrives during cool, wet weather between October and May. Patches are chlorotic to whitish in color and typically range from several inches to three feet in diameter. Patch centers are sometimes green, resulting in a “frog-eye” or yellowish ring effect. Banner, chlorothalonil, polyoxin-D (e.g., Affirm or Endorse), Headway, Heritage, Insignia, Medallion, ProStar or thiophanate-methyl are most effective when used on a preventive basis in late-October, but can also
Turf Diseases from page 2

provide curative control when used at label rates. Even without the use of fungicides, however, symptoms generally disappear with spring fertilization and a return to regular mowing and warm weather.

Brown ring patch (aka Waitea patch) is caused by the fungus Rhizoctonia circinata var. circinata and typically develops during warm weather from April through June. Although this disease has yet to show up in the tri-state region this season, symptoms which are very similar to yellow patch may develop earlier this year due to the usually warm weather. For best results, apply Medallion, polyoxin-D (e.g., Affirm and Endorse), ProStar, one of the QoI fungicides (e.g., Heritage or Insignia), Trinity, Triton Flo, and Torque now and repeat in two to three weeks to limit disease development later this spring. Unlike yellow patch, brown ring patch can degrade the thatch in infested areas so fungicide applications are typically required to prevent significant damage.

Rutgers Golf Classic

The Rutgers Golf Classic will be held on May 7, 2012 at the Fiddlers Elbow CC in Bedminster Township, N.J. This is a major regional turf research fundraiser that has attracted golfers from eight states and has raised over $1.1 million for the Rutgers Turf Research Program over the past 16 years. To be a part of this great opportunity to support turf research and extension programs at Rutgers, access on-line registration information at www.njturfgrass.org or call the New Jersey Turfgrass Foundation at (973) 812-6467.

Boxwood Blight

Ann Brooks Gould, Ph.D., Specialist in Plant Pathology and Rich Buckley, Coordinator, Plant Diagnostic Lab

A new disease of Buxus (boxwood), called boxwood blight, was recently detected in Connecticut in October of 2011. This disease, first described in the United Kingdom in the 1990s, has been found in eight states (including Massachusetts, North Carolina, and Virginia) and in British Columbia, Canada. The disease has not been detected in New Jersey.

Boxwood blight, caused by the fungus Cylindrocladium pseudonaviculatum, affects boxwood foliage and stems. Symptoms of the disease include leaf spot, leaf and stem blight, stem canker, and defoliation. English boxwood (Buxus sempervirens ‘Suffruticosa’) and cultivars of American (or common) boxwood (B. sempervirens) are susceptible. The pathogen has also been associated with cultivars of Japanese boxwood (Buxus microphylla var. japonica), Korean boxwood (Buxus sinica var. insularis), and Buxus sinica var. insularis X B. sempervirens hybrids. In experimental inoculations, plants in the related genus Sarcococca (sweet box) as well as pachysandra (Pachysandra terminalis) support development of the fungus.

Symptoms

Symptoms of boxwood blight appear on leaves as light- to dark-brown spots with darkened borders. The spots coalesce to form concentric patterns or zonate blotches of necrotic tissue. Characteristically, many brown or black cankers form along the length of the stems in “stripes,” resulting in stem girdling and dieback. Defoliation is common. Repeated infection can weaken plants, and severely affected boxwoods, especially young ones or transplants, may die.

Disease development

Boxwood blight spreads most rapidly in warm (64 to 77 F) temperatures and high humidity. This is of special concern for commercial growers where plants are grown in close proximity under such conditions. Cylindrocladium forms characteristic fruiting structures, called sporodochia, that emerge from lesions on the lower leaf surface and stems. Fungal spores (called conidia) are splash-dispersed to susceptible leaf and stem tissues where they penetrate through stomates or directly through the plant cuticle. As with most foliar diseases, free water on the tissue surface is required for infection. As with most foliar diseases, free water on the tissue surface is required for the infection process. Under optimal conditions, symptoms of the disease may appear in about a week under optimal conditions.

Cylindrocladium survives in affected plant tissues or in leaf debris. Although fungal spores may spread to nearby plants with splashing water or wind-driven rain, dispersal over longer distances may be associated with birds, animals, or contaminated clothing and equipment. Of greater concern, movement of infected plant material from nursery to nursery or state to state can rapidly spread the disease. Plants that are not outwardly symptomatic, or those that have been sprayed with a fungicide just enough to mask the disease without eradicating it, may easily serve as a source of inoculum to susceptible plants in nurseries and landscapes.

Management

Since boxwood blight is newly introduced to the U.S., it is not certain how serious an issue the disease will be long-term in affected nurseries and landscapes. Disease management will benefit from a strategy of combined use of scouting, cultural practices (including sanitation), and appropriate fungicide sprays.

See Boxwood Blight on page 4
Boxwood Blight from page 3

- Purchase and install only pathogen-free plant materials from reputable nurseries or garden centers. Thoroughly inspect plants and cuttings for any symptoms of disease.
- Isolate newly purchased plants or cuttings from existing plantings or production areas for up to three months. Segregate plant material by species or cultivar.
- Increase plant spacing to maximize air circulation and reduce humidity.
- Avoid overhead watering and do not work with the plants while they are wet.
- Remove sources of inoculum such as leaf debris. Remove and destroy diseased plants.
- In landscapes, plant alternative species that are not susceptible to boxwood blight.
- Fungicide efficacy as reported in the literature is not high. Products labeled for disease control on boxwood include azoxystrobin, chlorothalonil, some copper compounds, iprodione, lime sulfur, mancozeb, and boscalid + pyraclostrobin. Use fungicides in a regular preventive program, rotating compounds with different modes of action (FRAC groups) to avoid the development of resistant fungal strains.

Look for further updates about boxwood blight in future issues of this newsletter. The Rutgers Plant Diagnostic laboratory has examined many boxwood samples from growers throughout the state and has not detected the disease. Growers should be aware of the symptoms of boxwood blight, however, and should submit suspicious samples to the diagnostic laboratory for analysis. At this time, the laboratory will examine boxwood samples from commercial growers free of charge. For more information about the laboratory, visit the following website: http://www.njaes.rutgers.edu/plantdiagnosticlab.

Market your Business by Targeted Direct Mail
Clare Liptak, Retired Somerset County Agricultural Agent

Imagine that if marketing by cable TV and newspapers is like using a shotgun; targeted direct mail is like using a rifle. It’s less wasteful because you can focus on the neighborhoods where your best customers live. It’s flexible and produces results that are measurable. A closer proximity of clients increases profits.

Six direct mail letters are available on the Rutgers NJAES website at: http://www.njaes.rutgers.edu/ag/default.asp?turf. I wrote them for a marketing IPM talk held several years ago, and they’ve been used successfully by many landscapers since then. Those landscapers got more of the work described in the letters.

Still, the important thing is not the letters themselves, but that you study the letters along with this article and learn to write equally good communications for your own business. For example, use the letter about mulch because you have lots of mulch to sell. If you can plant flower gardens or landscapes that attract beneficial insects, use that letter. The reader will understand the value of such a planting, but not how to design the plantings without you. Notice that the letters acknowledge the investment that the homeowner has made in their property, and that the landscape firm offers services that can protect that investment. Also, each letter ends with what is called an “action close” such as “I’ll call you next week to set up an appointment.” Don’t invite them to call, because they probably won’t.

Some other tips:
- Address the letter to a person not to “occupant.”
- Most of the letters have the main offer, or an attention getting question, set off by what’s called a “Johnson box”, in this case, by a line of asterisks.
- Repeat your offer in the PS at the bottom of the page. Marketing experts say that people read the PS first, before the rest of the letter.
- Most companies can generate better mailing lists than they can buy, but secretaries have to ask for names and addresses of callers for lists.

Other topics for marketing letters include Fall is for Planting, landscaping around a pool, planting the landscape in stages. But in each case your letter should clearly emphasize the benefits the client will attain working with you rather than another landscape firm.

Considering that some bulk mail is never delivered, send your marketing letters first class, of course, and use a postage stamp, which is more personal than using a postage meter. Remember that people want to buy from people they know, or feel that they know.

Mail your letters early in the week and follow up with your potential customer about 9 or 10 days later. Positive responses can approach 50% if you follow-up your letter with a call; the usual response rate with no follow-up is 1 to 3%.

And if all of this (individually addressed, postage stamped, first class mail) is too time consuming or expensive, consider making these extra efforts on the smaller, but most profitable part of your customer base, your existing clients. It’s much easier to sell to them than it is to get new customers.

Clare Liptak, retired Somerset County Agricultural Agent, is an IPM scout, horticulturist, and Certified Tree Expert #208. clare.liptak@gmail.com.
Professional Fertilizer Applicator Certification and Training and Enforcement of the Law

Jim Murphy, Ph.D., Specialist in Turfgrass Management

As mentioned during the 2011 season, Rutgers NJAES has been building the Professional Fertilizer Applicator Certification and Training (ProFACT) website profact.rutgers.edu. The program is up and running and professionals continue to register and attain certified or trained fertilizer applicator status. In round numbers, there are currently about 2,000 registered, 1,000 certified and 300 trained through this program.

Certified Fertilizer Applicators (CFAs) are those professionals responsible for decision-making on fertilizer products, application rates and timing, equipment, etc. These CFAs go through training and must pass an exam to become certified, which can all be done online. The training for CFAs is more extensive than for Trained Fertilizer Applicators.

Trained Fertilizer Applicators (TFAs) are professionals that may apply fertilizer under the direct supervision of a Certified Fertilizer Applicator (CFA). Direct supervision means that Certified Fertilizer Applicators provide TFAs with written instructions regarding the application of fertilizer and maintain immediate contact via radio or mobile phone (voice) communication. The TFAs need to be trained but do not need to take an exam.

If you need to know the process for certification or training, you can view the “instructions” at http://profact.rutgers.edu/Pages/instructions.aspx.

We’ve been receiving requests for information on enforcement of the law. Below is an overview of enforcement of New Jersey’s Fertilizer Law.

Specific aspects of penalties and enforcement in this law include:

This law may be enforced by any municipality, county, local soil conservation district or local health agency. A local soil conservation district may institute a civil action for injunctive relief in Superior Court to enforce this law and to prohibit and prevent a violation of this law and the court may proceed in the action in a summary manner.

Any professional fertilizer applicator who violates the New Jersey Fertilizer Law is subject to a civil penalty of $500 for the first offense and up to $1,000 for the second and each subsequent offense, to be collected in a civil action by a summary proceeding under the “Penalty Enforcement Law of 1999,” P.L.1999, c.274 (C.2A:58-10 et seq.).

If the violation is of a continuing nature, each day during which it continues shall constitute an additional, separate and distinct offense. The Superior Court and the municipal court shall have jurisdiction to enforce the provisions of the “Penalty Enforcement Law of 1999”.

Please note that law preempts local governments from making additional rules and regulations about fertilizer for turf (except for penalties for non-professionals/homeowners).

The provisions of the law preempt any ordinance or resolution of a municipality, county or local health agency concerning the application of fertilizer to turf, except that municipalities are allowed to establish penalties for persons other than a professional fertilizer applicator or person who sells retail fertilizer.

Any person, other than a professional fertilizer applicator or person who sells fertilizer at retail, who violates this act, or any rule or regulation adopted pursuant thereto, may be subject to a penalty, as established by municipal ordinance, to be collected in a civil action by a summary proceeding under the “Penalty Enforcement Law of 1999,” P.L.1999, c.274 (C.2A:58-10 et seq.). The municipal court shall have jurisdiction to enforce the provisions of the “Penalty Enforcement Law of 1999”.

As you can see, enforcement will occur at the local government level using the prohibitions, restrictions and penalties established by the law. Inquiries or requests for enforcement should go to local officials in municipal and county government or local soil conservation districts (http://www.state.nj.us/agriculture/divisions/anr/nrc/conservdistricts.html).
Introduction to Organic Land Care Workshops
Tuesday, March 20, 2012
Middlesex County
4-H Center
645 Cranbury Rd.
East Brunswick NJ, 08816

Monday, March 26, 2012
Essex County Environmental Center
Garibaldi Hall
621A Eagle Rock Ave.
Roseland, NJ 07068

Sponsored by the Rutgers New Jersey Agricultural Experiment Station, Cooperative Extension in cooperation with the Middlesex County EARTH Center and Essex County Environmental Center
7:00 – 8:00 Registration and Coffee
Morning Chair: Jan Zientek, Senior Program Coordinator, Rutgers Cooperative Extension of Essex County
8:00 – 9:15 “Understanding and Organically Managing the Soil Beneath Your Feet.”
Dan Kluchinski, Agricultural Agent, Rutgers Cooperative Extension

9:15 – 10:30 “Organic Lawn and Landscape Care: An Integrated Approach”
Bill Hlubik, Agricultural Agent, Rutgers Cooperative Extension of Middlesex County

10:30 – 11:45 “Keys to Identifying the Common Landscape Pests”
Sabrina Tirpak, Rutgers Plant Diagnostic Laboratory
11:45 – 12:45 Lunch Break and Listening Session (Lunch will be provided)
Afternoon Chair: Bill Hlubik, Agricultural Agent
12:45—1:45 pm “Water Conservation and Water Quality Protection”
Michele Bakacs (Middlesex) and Amy Rowe (Essex), Environmental Agents, Rutgers Cooperative Extension

1:45 – 3:00 “Native vs. Invasive Plants in the Landscape”
Bruce Barbour, Agricultural Agent, Rutgers Cooperative Extension
3:00-3:30 pm Program Evaluation and Pesticide Recertification Credit Forms Distribution
NJ Certified Pesticide Applicator Credits:
CORE - 2 Cat. 3A - 5 Cat. 3B - 5 Cat. 3C - 5 Cat. 13 - 5 Cat. PP2 - 12
$50.00 Registration
For more information:
Cooperative Extension of Middlesex County
732-398-5273 or 5274
Cooperative Extension of Essex County
973-228-3179

2012 New Jersey Agricultural Water Summit
March 21, 2012, 9:00 A.M. to Noon
Rutgers Cooperative Extension of Burlington County
2 Academy Drive
Westampton, NJ 08060

All New Jersey farmers are invited to the Second Annual Agricultural Water Summit, developed to answer all questions regarding permitting, use of I maps, what constitutes good quality irrigation water, how nurseries can safely use run-off, proper pond management and much more.
Ask yourself these questions:
- Did you know that as an agricultural water user, you must now obtain a special permit when spraying near or in the wetlands? (Virtually all New Jersey farms have wetlands)
- Do you know if your farm is located in a critical water area that has restrictions?
- Do you have questions when you file your Water Use Certifications or fill out your Annual Water Use Reports?
These are just a few of the questions answered and explained for farmers who irrigate in New Jersey.

No registration is required
Due to the critical nature of the subject matter addressed, all growers in New Jersey are strongly encouraged to attend. I hope to see all you at this crucial special meeting.
For more information, call 609-265-5050 or go to: http://www.njaes.rutgers.edu/county/quickinfo.asp?Burlington for directions.
Weekly Weather Summary
Keith Arnesen, Ph.D., Agricultural Meteorologist

Temperatures averaged much above normal, averaging 41 degrees north, 44 degrees central, and 44 degrees south. Extremes were 72 degrees at Flemington and Trenton on the 9th and 19 degrees at Newton on the 7th. Weekly rainfall averaged 0.12 inches north, 0.04 inches central, and 0.04 inches south. The heaviest 24 hour total reported was 0.17 inches at Charlotteburg on the 9th to 10th. Estimated soil moisture, in percent of field capacity, this past week averaged 99 percent north, 97 percent central and 95 percent south. Four inch soil temperatures averaged 40 degrees north, 43 degrees central and 44 degrees south.

The following table contains meteorological information since the start of the growing season March first. The table is updated each Monday and the following is an explanation for each column.

WEEK=	TOTAL RAINFALL FOR THE PREVIOUS 7 DAYS ENDING MONDAY MORNING
TOTAL=	TOTAL RAINFALL SINCE MARCH 1ST
DEP=	DEPARTURE FROM NORMAL OF RAINFALL SINCE MARCH 1ST. A NEGATIVE SIGN INDICATES BELOW NORMAL AND NO SIGN INDICATES ABOVE NORMAL.
MX=	HIGHEST TEMPERATURE FOR THAT 7 DAY PERIOD
MN=	LOWEST TEMPERATURE FOR THAT 7 DAY PERIOD
AVG=	AVERAGE TEMPERATURE FOR THAT 7 DAY PERIOD
DEP=	DEPARTURE FROM NORMAL OF THE AVERAGE TEMPERATURE FOR THAT 7 DAY PERIOD
TOT=	TOTAL NUMBER OF GROWING DEGREE UNITS SINCE MARCH 1ST
DEP=	DEPARTURE FROM NORMAL OF GROWING DEGREE UNITS
%FC=	PERCENT OF FIELD CAPACITY (SOIL MOISTURE)

Weather Summary for the Week Ending 8 am Monday 3/12/12

<table>
<thead>
<tr>
<th>WEATHER STATIONS</th>
<th>R A I N</th>
<th>F A I L</th>
<th>TEMPERATURE</th>
<th>GDD BASE50</th>
<th>MON</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEEK</td>
<td>TOTAL</td>
<td>DEP</td>
<td>MX</td>
<td>MN</td>
<td>AVG</td>
</tr>
<tr>
<td>BELVIDERE BRIDGE</td>
<td>.11</td>
<td>.77</td>
<td>-.70</td>
<td>68</td>
<td>22</td>
</tr>
<tr>
<td>CANOE BROOK</td>
<td>.08</td>
<td>.93</td>
<td>-.81</td>
<td>70</td>
<td>25</td>
</tr>
<tr>
<td>CHARLOTTEBURG</td>
<td>.17</td>
<td>.92</td>
<td>-.67</td>
<td>70</td>
<td>21</td>
</tr>
<tr>
<td>FLEMINGTON</td>
<td>.07</td>
<td>.89</td>
<td>-.73</td>
<td>72</td>
<td>21</td>
</tr>
<tr>
<td>NEWTON</td>
<td>.18</td>
<td>.71</td>
<td>-.65</td>
<td>70</td>
<td>19</td>
</tr>
<tr>
<td>FREEHOLD</td>
<td>.00</td>
<td>.94</td>
<td>-.78</td>
<td>72</td>
<td>22</td>
</tr>
<tr>
<td>LONG BRANCH</td>
<td>.04</td>
<td>1.40</td>
<td>-.39</td>
<td>71</td>
<td>25</td>
</tr>
<tr>
<td>NEW BRUNSWICK</td>
<td>.05</td>
<td>1.11</td>
<td>-.45</td>
<td>71</td>
<td>22</td>
</tr>
<tr>
<td>TOMS RIVER</td>
<td>.06</td>
<td>1.14</td>
<td>-.52</td>
<td>71</td>
<td>23</td>
</tr>
<tr>
<td>TRENTON</td>
<td>.05</td>
<td>1.09</td>
<td>-.47</td>
<td>72</td>
<td>27</td>
</tr>
<tr>
<td>CAPE MAY COURT HOUSE</td>
<td>.00</td>
<td>1.81</td>
<td>.29</td>
<td>66</td>
<td>22</td>
</tr>
<tr>
<td>DOWNTOWN</td>
<td>.04</td>
<td>1.20</td>
<td>-.35</td>
<td>70</td>
<td>19</td>
</tr>
<tr>
<td>HAMMONTON</td>
<td>.00</td>
<td>1.39</td>
<td>-.15</td>
<td>70</td>
<td>22</td>
</tr>
<tr>
<td>POMONA</td>
<td>.08</td>
<td>2.25</td>
<td>.69</td>
<td>70</td>
<td>22</td>
</tr>
<tr>
<td>SEABROOK</td>
<td>.06</td>
<td>1.67</td>
<td>.33</td>
<td>70</td>
<td>24</td>
</tr>
<tr>
<td>SOUTH HARRISON</td>
<td>.02</td>
<td>1.27</td>
<td>-.11</td>
<td>70</td>
<td>26</td>
</tr>
</tbody>
</table>

WES KLINE -- GDD BASE 40 PINEY HOLLOW LAST WEEK (24 Ending 3/5/12) THIS WEEK (42 Ending 3/12/12)
SNOWFALL TOTALS PER EVENT CAN BE OBTAINED BY VISITING THE NEW JERSEY STATE CLIMATE WEB-SITE AT http://climate.rutgers.edu/stateclim THEN CLICK ON “Winter 2009-2010 Snow Event Totals”

Counties for Weather Station Locations

Belvidere Bridge	Warren
Canoe Brook	Essex
Charlotteburg	Morris
Flemington	Hunterdon
Newton	Sussex
Freehold	Monmouth
Long Branch	Monmouth
New Brunswick	Middlesex
Toms River	Ocean
Trenton	Mercer
Cape May Court House	Cape May
Downtown	Gloucester/Atlantic county line
Glassboro	Gloucester
Hammonton	Atlantic
Pomona	Atlantic
Seabrook	Cumberland
South Harrison	Gloucester
Pesticide User Responsibility: Use pesticides safely and follow instructions on labels. The pestcide user is responsible for proper use, storage and disposal, residues on crops, and damage caused by drift. For specific labels, special local-needs label 24(c) registration, or section 18 exemption, contact RCE in your County.

Use of Trade Names: No discrimination or endorsement is intended in the use of trade names in this publication. In some instances a compound may be sold under different trade names and may vary as to label clearances.

Reproduction of Articles: RCE invites reproduction of individual articles, source cited with complete article name, author name, followed by Rutgers Cooperative Extension, Plant & Pest Advisory Newsletter.

For back issues, visit our web site at: www.rce.rutgers.edu/pubs/plantandpestadvisory