At a glance. Insect and disease problems that should be considered this week.

<table>
<thead>
<tr>
<th>PEST/DISEASE/CULTURE</th>
<th>JULY 11- JULY 17 HARVEST</th>
<th>JULY 18-JULY 24 HARVEST</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANTHRACNOSE</td>
<td>No need to continue spraying Duke fields. Consider adding a Phosphite material with Anthracnose applications</td>
<td>Hopefully finished hand harvest</td>
</tr>
<tr>
<td>Captan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYTOPHTHORA</td>
<td>Symptoms should be evident now. Scout and have roots tested.</td>
<td></td>
</tr>
<tr>
<td>STEM BLIGHT</td>
<td>Scout and prune out symptomatic shoots</td>
<td></td>
</tr>
<tr>
<td>SPOTTED WING DROSOPHILA</td>
<td>Go to a protective schedule if still picking.</td>
<td>Continue protective schedule.</td>
</tr>
<tr>
<td>Sevin, Lannate, Imidan, Malathion, Delegate/Entrust, Asana, Brigade, Danitol, Mustang-Max, Hero</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BLUEBERRY MAGGOT</td>
<td>Monitor traps and treat if catching 1 or more flies per trap in any production area.</td>
<td>Monitor and treat as needed.</td>
</tr>
<tr>
<td>See previous list</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ORIENTAL BEETLE</td>
<td>Monitor and treat with imidacloprid (Admire Pro) or generic product now through mid July if OB populations are high.</td>
<td>Last chance to treat.</td>
</tr>
<tr>
<td>Admire or imidacloprid generic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BROWN MARMORATED STINK BUG</td>
<td>Monitor field borders and treat if BMSB adults and nymphs are present.</td>
<td>Monitor and treat especially if BMSB is present and machine harvesting.</td>
</tr>
<tr>
<td>Actara, Assail, Brigade, Danitol, Hero, Lannate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>APHIDS</td>
<td>Monitor for aphid colonies, and treat if over 10% of terminals are infested.</td>
<td>Treat if over 10% of terminals are infested.</td>
</tr>
<tr>
<td>Admire, Assail, Actara</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CULTURE:

Dr. Gary C. Pavlis, Ph.D

County Agricultural Agent

Pruning timing - ‘Bluecrop’ harvest is finishing and ‘Elliott’ has begun and it’s only the second week of July. It appears that all berries will be off the bushes by late July, making this one of the earliest harvest years in a long time. Some growers who will still have labor are considering what this labor can be used for. One grower asked me if pruning could be started when harvest is finished. The
answer is yes, but at what cost? It must be remembered that the objective of pruning is to remove old wood but also to stimulate new cane growth. New canes are where the money is. The ideal time to prune is late winter, after the worst of the winter is over. As a result, dead wood can be removed AND new canes are stimulated at a time when they have the entire season to grow. If pruning is done in mid-summer or early fall, the canes start to grow, usually only reach 10-12 inches of height, and then stop when the winter temps cease growth. The next season these canes do not continue to grow but put out laterals. Laterals at 12 inches high produce fruit that will never be picked. In addition, these canes are often killed back by the winter producing canes which will never amount to anything from a fruit standpoint.

Years ago, through our research we proved that cutting canes at 6, 8, 10 inches high result in that cane dying and often developing stem canker. This old practice of pruning has largely been abandoned. Pruning in the summer and early fall does not develop productive canes and is not recommended. I realize that labor is always an issue, but remember that fully developed canes put money in the grower’s pocket.

Sincerely,

Gary C. Parise
Atlantic County Agricultural Agent

Editor – Blueberry Bulletin

INSECTS:

Dr. Cesar Rodriguez-Saona, Extension Specialist in Blueberry Entomology, Rutgers University
Mr. Dean Polk, IPM Agent – Fruit
Mr. Gene Rizio, IPM Program Associate – Fruit

Spotted Wing Drosophila (SWD)…and Blueberry Maggot (BBM): Trap captures have gradually increased over the past week. Where some of our vinegar traps have had “0” to low counts, an observation on Monday 7/2, showed that many of our blueberry maggot traps were also catching high numbers of SWD on the same farms where the vinegar traps were at “0”. Some yeast traps also had high numbers. We have also found a few hanging blueberry samples with larvae. SWD is now widespread throughout the South Jersey area and poses a significant risk related to fruit infestation. For this reason we are recommending that all unharvested blueberry fruit be treated for this pest until the close of the season. See the June 25 newsletter for products and suggestions, and make sure to be careful with preharvest intervals and the lack of established MDLs if your fruit is intended for export. The products listed for control of SWD that give good to excellent control are:

<table>
<thead>
<tr>
<th>Product</th>
<th>PHI</th>
<th>MRL for Canada (Yes/No)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sevin</td>
<td>7</td>
<td>Yes</td>
</tr>
<tr>
<td>Lannate</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>Imidan</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>Malathion</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>Delegate/Entrust</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>Danitol</td>
<td>3</td>
<td>Yes</td>
</tr>
<tr>
<td>Asana</td>
<td>14</td>
<td>No</td>
</tr>
<tr>
<td>Brigade</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>Mustang Max</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>Hero</td>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>
Malathion and Rates: Due to the need for both blueberry maggot control and SWD control, the need for an MRL for Canada, and the need and flexibility for a 1 day PHI material, many growers are using malathion. Be aware that there may be 2 labels in the distribution chains. EPA recently restricted the amount of a.i. allowed per application, thus giving rise to a new label. If for example you look at the 8F formulation, the old label allows 2.5 pt/A. The new label allows only 1.25 pt/A. This aside, the maximum rate of the ULV formulation allows 10 oz/A which is about 12.4 oz a.i./A, while the maximum rate allowed of the 8F formulation at 1.25 pt/A is 20 oz a.i./A. This might seem confusing, since the stated rate on the label is in measured fluid oz (by volume). Some liquid formulations weigh more than water. A gallon of water weighs 8 lb or 128 oz (16 oz/pt). Malathion ULV contains 9.9 lb of a.i. per gallon and the 8F formulation contains 8 lb a.i. per gallon. The stated a.i. in the above calculations is calculated by weight per fluid oz.

Aphids: As of 7/10: Aphid presence has decreased again this week compared to the previous week. About 46% of samples are positive, and only 4% were over the 10% infestation level. Again, small colonies and singles make up most of the positive sightings in the field.

Oriental Beetle (OB): Adults are still mating and laying eggs in the field. If not done already, there is still time to treat if needed, especially for ‘Duke’, since harvest has been completed. Do not extend treatments past the middle of July this year, since it is likely that this year’s larvae will be too old by late July to be adequately controlled. **Japanese Beetle:** Beetle pest pressure seems to be stable with no significant injury / presence on the bush. About 3% of our samples show beetles on fruit/foliage, and on occasion a small amount of fruit injury may be seen. No samples have been seen where a specific treatment would be required.

Brown Marmorated Stink Bug (BMSB): We have noticed a slight increase in the frequency of this stink bug presence. Most of our positive samples have been with beating trays. In total, 4% of our tray and shoot samples have been positive. None of these samples have had levels greater than 1 adult or nymph and to date no specific fruit injury has been seen. However, this is the time of year when quite a bit of machine harvesting is done. Experience from 2011 showed that even low numbers can translate into stink bug nymphs being taken into the picking trays with a machine harvester. If you have any stink bugs in your fields, it may be advisable to treat prior to machine harvesting and then checking the lugs for any possible bug contamination.

Leafrollers and Other Leps: Leafroller larval activity was very low over the week of July 4th. Only 1% of shoot and beating tray samples show low levels of larvae. As of 7/10: Leafroller worm activity increased mostly due to live worms seen in BB Leafminer tents in addition to occasional LR larvae seen in shoot samples (some are OBLR). We had 5 samples with OBLR larvae combined with leafminers yielding over 5% shoots infested. None of this activity was seen associated with fruit, only foliage.

Putnam Scale: From the week of July 4th. About 22% of fruit samples are positive for scale, and 4% exceed the 1% infestation level. Only a small number of sites have had high levels of infestation this season. Some of the active areas seen this year have had no history of problems during past seasons. Crawler traps are almost 0 at this time so treatments should not be made until activity begins again later in July or early August.

Anthracnose: Only 2% of field fruit samples show low levels of infection. About 0.1% infestation (1 berry in 1000) is the typical level seen.
Blueberry Insect Trap Counts - Atlantic County

<table>
<thead>
<tr>
<th>Week Ending</th>
<th>CBFW</th>
<th>RBLR</th>
<th>OBLR</th>
<th>SNLH</th>
<th>Or. Beetle</th>
<th>BBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/7</td>
<td>105</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/14</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/21</td>
<td>2.6</td>
<td>25</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/28</td>
<td>0.43</td>
<td>5.60</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/5</td>
<td>0.27</td>
<td>1.34</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/12</td>
<td>0.86</td>
<td>0.62</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/19</td>
<td>2.91</td>
<td>0.06</td>
<td>0.05</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/26</td>
<td>1.32</td>
<td>0.76</td>
<td>1.03</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/2</td>
<td>1.98</td>
<td>49.45</td>
<td>1.18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/9</td>
<td>0.81</td>
<td>91.83</td>
<td>0.90</td>
<td>0.59</td>
<td>2.43</td>
<td>0.014</td>
</tr>
<tr>
<td>6/16</td>
<td>1.05</td>
<td>92.82</td>
<td>1.61</td>
<td>1.21</td>
<td>134.08</td>
<td>0.015</td>
</tr>
<tr>
<td>6/23</td>
<td>0.13</td>
<td>37.00</td>
<td>0.49</td>
<td>0.55</td>
<td>457.20</td>
<td>0.106</td>
</tr>
<tr>
<td>6/30</td>
<td>0.40</td>
<td>36.0</td>
<td>0.4</td>
<td>0.5</td>
<td>1011.3</td>
<td>0.2</td>
</tr>
<tr>
<td>7/7</td>
<td>0.03</td>
<td>25.59</td>
<td>0.08</td>
<td>0.29</td>
<td>988.87</td>
<td>0.496</td>
</tr>
</tbody>
</table>

Blueberry Insect Trap Counts - Burlington County

<table>
<thead>
<tr>
<th>Week Ending</th>
<th>CBFW</th>
<th>RBLR</th>
<th>OBLR</th>
<th>SNLH</th>
<th>Or. Beetle</th>
<th>BBM</th>
</tr>
</thead>
<tbody>
<tr>
<td>4/7</td>
<td>49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/14</td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/21</td>
<td>0.25</td>
<td>16</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/28</td>
<td>0.40</td>
<td>4.30</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/5</td>
<td>0.52</td>
<td>3.38</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/12</td>
<td>2.24</td>
<td>0.20</td>
<td>0.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/19</td>
<td>2.08</td>
<td>0.22</td>
<td>2.08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/26</td>
<td>0.49</td>
<td>0.13</td>
<td>7.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/2</td>
<td>1.60</td>
<td>22.50</td>
<td>4.83</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/9</td>
<td>0.73</td>
<td>33.5</td>
<td>6.4</td>
<td>0.35</td>
<td>7.5</td>
<td>0</td>
</tr>
<tr>
<td>6/16</td>
<td>0.85</td>
<td>115.3</td>
<td>1.00</td>
<td>1.29</td>
<td>172.38</td>
<td>0.524</td>
</tr>
<tr>
<td>6/23</td>
<td>1.18</td>
<td>93.86</td>
<td>0.67</td>
<td>2.16</td>
<td>492.00</td>
<td>0.079</td>
</tr>
<tr>
<td>6/30</td>
<td>0.4</td>
<td>59.2</td>
<td>0.2</td>
<td>2.3</td>
<td>967.2.</td>
<td>0.3</td>
</tr>
<tr>
<td>7/7</td>
<td>0.00</td>
<td>17.38</td>
<td>3.30</td>
<td>0.64</td>
<td>470.00</td>
<td>0.030</td>
</tr>
</tbody>
</table>

HERE’S WHAT’S HAPPENING IN NJ IR-4

Dr. Cesar Rodriguez-Saona
Extension Specialist in Blueberry/Cranberry Entomology, Rutgers University

The IR-4 Project is “a cooperative program of the USDA and the SAES, with the principle goal of developing data to support and to expedite regulatory clearances of newer, reduced risk pest control products for specialty crop growers.” More information on the IR-4 Project can be found at http://ir4.rutgers.edu/. As the IR-4 liaison for the state of New Jersey, my main responsibility is to represent the pesticide needs of minor crops in New Jersey at the IR-4 Food Use Workshop meeting.

This year, the IR-4 Food Use Workshop will take place on Tues.-Wed., Sept. 11-12, at the St. Louis Union Station Marriott, downtown St. Louis, MO. New projects must be submitted no later than August 15. These projects will be discussed at the workshop in September. If you would like to submit a project, visit the IR-4 website listed above and click on “Submit a
Blueberry Bulletin, Vol. XXVIII, No. 15

Request”. Nominations for projects can be done August 17-30. I will represent New Jersey grower needs at this workshop. Please let me know if you are submitting a request, and whether you plan to attend the meeting. That way I will be aware of all the projects being submitted and attendees from New Jersey, and thus be better prepared to support your requests.

Please feel free to contact me if you have any questions at 609-726-1590 x 4412, or e-mail me at crodriguez@aesop.rutgers.edu

**

Blueberry Consumption

By Lisa House and Allen Wysocki

Food and Resource Economics Department

The consumption of blueberries in the U.S. has been on the increase for the last two decades, from 42.3 to 345.4 million pounds between 1991 and 2010 (Figure 1). Per capita consumption of blueberries has increased from 0.17 to 1.11 pounds over the same period. Though there are some fluctuations in blueberry consumption, the general trend has been increasing, particularly in the last ten years when total consumption more nearly quadrupled from 73.1 to 345.4 million pounds (USDA). At the same time the industry saw increases in fresh blueberry consumption, consumption of frozen blueberries fluctuated, with increases from 1980 – 1990, but a more steady consumption from 1990 – 2010. Total consumption of frozen blueberries increased from 0.18 pounds per capita in 1980 to 0.33 pound per capita in 1990, where it held relatively steady until recently. Between 2007 and 2010, large increases were seen in per capita consumption of both fresh and frozen blueberries, with fresh consumption increasing 90% and frozen consumption increasing 56%.

Figure 1. Per capita consumption of fresh and frozen blueberries in the United States, 1980 - 2010

With the increases in demand for blueberries, prices have remained strong. The grower price for fresh blueberries increased from $0.88/pound in 1993 to $2.11/pound in 2007. Prices for processed blueberries also increased, from $0.33/pound to $1.52/pound over the same time period (USDA). Because Florida’s early-season southern highbush blueberries are the first cultivars to ripen in North America, the grower price in Florida is higher than that in other major blueberry production states. Fresh blueberries shipped from Florida received an average price of over $4 per pound before May 20 (Williamson et.al 2004).

To learn more about factors that influence blueberry consumption, the Florida Agricultural Market Research Center at the University of Florida conducted an online survey with adult participants in the Eastern half of the United States. Prior to preparation of the survey, focus groups were conducted in Jacksonville, Florida and Washington, D.C. to gain insight into consumption patterns and to facilitate construction of the survey instrument. The online survey was conducted (sample provided by Survey Sampling, Inc.) from September, 2010 through August, 2011, with a minimum of 350 responses collected each month. In total, 5,110 participants responded to the survey. The randomly recruited participants met
the criteria of being an adult, primary grocery shopper (performs 50% or more of the household grocery shopping), who lived in Eastern half of the United States. Participants were first asked whether or not they had ever purchased fresh or frozen blueberries, followed by whether they had purchased fresh or frozen blueberries in last month. Purchase information was collected monthly to aid in consumer recall, as well as to better understand the impact of seasonality on purchases of both types of blueberries. Participants also answered questions about tastes and preferences regarding blueberries, as well as demographic questions. The following is a descriptive summary of results from this survey.

Overall, 84% of the respondents indicated they had purchased fresh or frozen blueberries at some time. There were statistically significant regional differences: 86% of participants in the Northeast reported consumption compared to 81% the Southeast. There were also differences in whether fresh or frozen blueberries had been purchased in the previous month depending on the time of year, as well as whether the respondent lived in the Northeast or Southeast region of the United States (the percent of respondents purchasing fresh blueberries increases during summer months, while frozen consumption tends to fluctuate from 30-40% of consumers, regardless of season) (Figure 2). The percent of respondents who reported not purchasing any blueberries in the previous month also differed depending on the time of year and region (Figures 2 and 3). This is not surprising that respondents would indicate reduced purchases during traditional off-seasons for blueberries.

Differences in overall preferences regarding fresh and frozen blueberries indicate that consumers generally like fresh blueberries more than frozen, as is expected with the recent trend to increase fresh consumption at faster rates (Figure 4). Participants also report eating blueberries for a variety of reasons. When asked how much they agree or disagree with a variety of reasons for eating blueberries, the largest percent of respondents indicated they eat blueberries because of the taste, followed by health. Price was not seen as a reason for eating blueberries by many approximately 70% of consumers. The only reason that
significantly differed by region was taste, where consumers from the Northeast indicated taste was a slightly bigger reason than those from the Southeast, perhaps explaining the different levels of consumption in those regions.

When purchasing blueberries, consumers report that the most important factors that influence them the most are the freshness of blueberries and the lack of appearance of mold. Following the top two factors were firmness, color, price, and size. This corresponds to focus group results that indicated that being able to see the blueberries to make sure they would not be soft or moldy is an important feature of packaging. Participants felt container size, where the blueberries were grown, and availability of samples were the least important factors of the nine they could select from.

To learn more about how important location of production is, participants were asked if they consider the location of production when purchasing fresh blueberries. Less than half (42%) indicated this was a factor. Participants were then asked how likely they were to purchase blueberries produced in their state, the United States, and imported. Those who felt strongly that location mattered were more likely to select blueberries from their state first, followed by the United States, followed by imported. Those that indicated location is not that important were not as likely to differentiate between blueberries from their state and the United States, but preferred either of these to imported blueberries.

Summary

The results from this survey verify many pre-conceived notions about consumers. Respondents in the Northeast reported a higher consumption of blueberries than respondents in the Southeast and consumers generally like fresh blueberries more than frozen. However, there are also some important messages about blueberry consumption. The largest percent of respondents indicated they eat blueberries because of the taste, followed by health. Price was not seen as a reason for eating blueberries by many approximately 70% of consumers. When purchasing blueberries, consumers feel freshness of blueberries and the lack of appearance of mold are important, likely identifying these factors as influencing the taste. Participants felt container size, where the blueberries were grown, and availability of samples were the least important factors they could select from. Those who felt strongly that location mattered were more likely to select blueberries from their state first, followed by the United States, followed by imported.

References:

Annual National IR-4 Funding

Direct Support
- USDA-NIFA (Improved Pest Management*) $12,180,000
- USDA-ARS $4,000,000
- USDA-FAS (TASC Grant) $500,000
- USDA-APHIS (Invasive Species) $172,000
- Hatch Grant (Multi State Research) $481,182
- Dept. of Defense/USDA-ARS (Public Health) $250,000
- Industry Grants $1,100,000

Over $18 million direct

In-Kind Support
- Land Grant Universities and/or
 - State Agriculture Experiment Stations ~$10,000,000
 - Crop Protection Industry ~$3,000,000
 - Regulatory Authorities (EPA, CA-DPR) ~$4,200,000
- Agriculture and Ag-Food Canada ~$800,000

Indirect contributions at least $18 million

*IR-4 is one of several programs within USDA-NIFA (Improved Pest Management)

Contact Us...

Northeast IR-4 Regional Field Coordinator
Edith Lurvey, Cornell University-NYSAES
315.787.2308
e110@cornell.edu

New Jersey IR-4 State Liasion Representative
Cesar Rodriguez-Saona, Rutgers University
609.726.1590 x 4412
crodriguez@aesop.rutgers.edu

IR-4 Headquarters - Rutgers University
Jerry J. Baron, IR-4 Executive Director
732.932.9575 x 4605
jbaron@aesop.rutgers.edu

A Proven Program with Proven Results

Since it has been established, IR-4 research has supported more than 24,000 food and ornamental horticulture use registrations. Also, according to the Center for Economic Analysis at Michigan State University, “when considering direct, indirect and induced effects, the IR-4 Project contributes nearly 7 billion dollars to annual US GDP.”

IR-4 research activities are predominantly funded through annual Congressional Appropriations ($12.18 million USDA-NIFA, $4 million USDA-ARS).

Conducting this research is becoming more and more costly due to inflation and the complexity of analyzing new reduced and lower risk chemistries. It is also becoming more challenging and costly for IR-4 to meet EPA data requirements. For IR-4 to maintain its current level of high productivity, funding needs to increase. There is no other program or organization doing this work. If IR-4 doesn’t do it, no one else will.

Specialty crop growers believe that without adequate funding to support IR-4’s research on safe, effective pest management solutions, our domestic harvests are in jeopardy… which means more imports and higher prices at the grocery store.

Please Help IR-4 Continue to Assist Specialty Crop Growers by:
- letting IR-4 know your pest management needs
- participating in IR-4 sponsored research
- supporting adequate funding at all levels (industry, university, and government)

To learn more about IR-4 visit ir4.rutgers.edu.
About IR-4

The IR-4 Project is a cooperative effort charged with assisting specialty crop growers in solving pest management problems. Specialty crop growers are faced with multiple pest management challenges as they grow New Jersey’s multi-million dollar harvest of fruits, and vegetables along with a bevy of ornamental horticulture crops from greenhouse and nursery plants to Christmas trees. The unique nature of New Jersey’s intensive specialty crop production necessitates the development of important new pest management products. IR-4’s mission is to address the needs of high value low acreage crop growers that are not otherwise addressed. About 80% of IR-4 research projects are conducted on reduced-risk chemistries and biopesticides that fit well into Integrated Pest Management (IPM) systems.

Who Benefits From IR-4 Activities?
New Jersey growers benefit by having effective pest management tools that enable them to produce a plentiful supply of high quality food and ornamental horticulture crops. This in turn benefits the general public, food processors and other related industries which are provided with a safe, high quality, economical supply of food and horticulture crops.

Working in Cooperation
IR-4 works in cooperation with Rutgers University, the State Agricultural Experiment Stations, and Land Grant Universities, USDA-National Institute of Food and Agriculture (NIFA), USDA-Agricultural Research Service (ARS), USDA-Foreign Agricultural Service (FAS), USEPA, and other regulatory agencies, growers and commodity organizations, and the crop protection industry.

How IR-4 Helps Growers
When a pest is discovered or new pesticide use is needed on a specialty crop, growers, extension agents and researchers are encouraged to submit a project request to IR-4.

Once Needs are Identified
• Industry is consulted for project support
• Projects are prioritized
• Research is conducted

IR-4 Generates Data for...

Food Use
• Residue data from research trials are compiled and submitted to the EPA for review and establishment of pesticide tolerances
• The manufacturer adds the use to the label

Ornamental Horticulture
• Efficacy and crop safety data are compiled into research summaries which are sent to manufacturers
• Manufacturers review summaries and incorporate into technical literature and product labels

Outcome:
Healthier crops are produced and crop protection issues are resolved.

IR-4 Helps Food Crop Growers
New Jersey fruit and vegetable growers annually produce about $332 million worth of crops for US and international markets (2007 USDA-NASS Census of Agriculture). Healthy crops are critically important to specialty crop growers. IR-4 has responded to hundreds of requests from New Jersey for registration of pest management products on food crops. By developing required data, thousands of new product uses have been registered that support New Jersey growers.

IR-4 Helps Ornamental Horticulture Growers
with perennial plants, Christmas trees, hostas, shrubs, fruit trees, flowering trees, cut flowers, petunias, and ornamental grasses.

IR-4 researchers in New Jersey have worked with these and other crops grown by New Jersey growers, who produce $441 million (2007 USDA-NASS Census of Agriculture) in annual ornamental horticulture sales.

Helping New Jersey

IR-4 Helps Ornamental Horticulture Growers
by providing resources that promote the use of biopesticides along with traditional IPM. The IR-4 Biopesticide and Organic Support Program was expanded recently to include the development of new tools for organic growers.

The IR-4 Biopesticide and Organic Support Program Helps New Jersey Growers
by providing resources that promote the use of biopesticides along with traditional IPM. The IR-4 Biopesticide and Organic Support Program was expanded recently to include the development of new tools for organic growers.

IR-4 Public Health Pesticides Program (PHP)
Initiated in 2009, the IR-4 PHP program is a partnership of USDA-ARS, the US Department of Defense and IR-4. It was created to facilitate development and registration of toxicants, repellents and attractants to manage public health pests such as mosquitoes, ticks, sand flies and to protect military personnel from arthropod borne diseases.

“The cranberry and blueberry industries are both small in scale, and they both exist in New Jersey’s wetlands. Without the IR-4 Project, we would be ignored by the chemical companies and would be struggling to find solutions to our pest problems.”
— Joe Darlington, Chairman, New Jersey Blueberry Cranberry Research Council Inc
July 9, 2012 Vol. XXVIII, No. 15

BLUEBERRY BULLETIN

If you have any comments about this newsletter, please make them in the space below and mail to:
Dr. Gary C. Pavlis, County Agricultural Agent
Rutgers Cooperative Extension of Atlantic County
6260 Old Harding Highway, Mays Landing, NJ 08330

I would like to see an article on the following subjects: __

I would like to comment on the following articles:

Title: __ Date: _______________________________________

Comment: __

__