

Peach Irrigation During the Dry Seasons

Hemant Gohil, Ph.D.

Gloucester County Agricultural Agent
Co-operative Extension of Rutgers University

Annual precipitation in Washington State

The largest and premium quality apple growing region

http://www.prism.oregonstate.edu/state_products/index.phtml?id=WA

Water affects peach tree and fruit development

- Greater wood structure, potential fruitfulness and fruit sizing
- Replenishing the water lost due to ET
- Fruit gains up to 70% of their final volume during the last 30 days on the tree.
- Less water during this stage of development means <u>smaller fruits</u> and <u>loss in size is irreversible</u>

When to Irrigate (depends on water stress)

How much to Irrigate (soil type, irrigation system, age of tree)

How long to Irrigate (irrigation system and soil type)

Approaches to estimate water stress

- Feel and appearance based
- Soil based (e.g. Tensiometer, resistance)
- Plant based (e.g. Pressure chamber)
- Irrigation model based (e.g. NEWA)

Soil Tensiometer indicates water status from the soil's point of view

Vacuum gauge

Plexiglass tube

Porous ceramic tip

Installation of Tensiometer

https://www.bae.ncsu.edu/programs/extension/evans/ag452-2.html

Electrical resistance blocks

New Jersey Agricultural Experiment Station Soil sensor reading and their meanings

Reading		Soil water	Interpretation	
(centibars)		status		
0-10	*Cbr	Saturated	No Stress.	
			Water should be drained.	
10-20	Cbr	Field	No Stress.	
		capacity	No Irrigation needed.	
30-70	Cbr	Limited	Mild-moderate stress.	
			Irrigate depending on soil	
			type.	
>70	Cbr	Too dry soil	High-severe stress.	
			Irrigate to Field Capacity.	

Begin Irrigation at 50% moisture depletion

	Apprx. centibars reading at		
Soil Type	50% moisture depletion		
Sand	20 Cbar		
Loamy Sand	25 Cbar		
Sandy Loam	40 Cbar		
Loam	65 Cbar		
Silt Loam	90 Cbar		

Challenges to soil based sensors

- Manual, requires regular visits
- Regular maintenance (Tensiometer)
 - Purging the air bubble
 Maintain the water level
 Organic growth in the tube
 Interpretation of number
- Annual replacement (resistance block)

Use advanced soil sensors

newer Tensiometer with data logger

newer resistance sensors with data logger

Pressure Chambers indicate water stress from plants point of view

Pump-up chambers

RUTGERS tem Water Potential values and their meaning

Leaf Water Potential	Interpretation		
less than -10 Bars	no stress		
	mild stress		
	moderate stress		
-14 to -16 Bars	high stress		
above -16 Bars	severe stress		

How much to Irrigate in dry season?

 Irrigation amount depends on <u>environmental</u> factors, <u>spacing</u>, <u>stage of growth</u> and an <u>age of a</u> <u>peach tree</u>.

```
Mature = 30-45 Gallon/tree/day

3 Year = 10-20

4 Year = 20-30

2 Year = 7-10

1 Year = 2-5
```

Monitoring the weather

The water use by fruit trees is amazingly similar between tree fruit species - University of California ANR

Table 1: Example of duration of irrigation in peach and apple orchard during the peak of the season

			Hours based on emitters		Micro sprinkler
Age	Water requirement	Spacing	flow rate		flow rate
	Gallons Per Tree		1.0 GPH	2 GPH	10 GPH
			x 4*	x 4	x 1
Mature	30 - 40 G		8 - 10	4 -5	3 - 4
4	20 - 30 G		5 - 8	3 - 4	2 - 3
3	10 - 20 G	20' x 20'	3 - 5	2 - 3	2 - 1
2	7 - 10 G		2 - 3	1 -2	0.5 - 1
1	2 - 4 G		1 - 2	0.5 - 1	0.3 - 0.5
			1.0 GPH	2 GPH	5 GPH
			x 2	x 2	x 1
Mature	10 - 12 G		5 - 6	3 - 4	2 - 3
4	8 - 10 G		4- 5	2 - 3	1.5 - 2
3	6 - 7 G	6' x 12'	3- 4	1 - 2	1 - 1.5
2	2 - 3 G		1-2	0.5 - 1	0.5
1	1 - 2 G		0.5 -1	0.5	0.5

^{*} Number of emitters

Application rates should be based on soil type

Soil Type Maxi application rates to avoid run-off or deep percolation loses.

Sand 1.0"/hour

Loamy Sand 0.7"/hour

Sandy Loam 0.5"/hour

Loam 0.4"/hour

Silt Loam 0.3"/hour

Know you soil profile

Follow soil moisture conservation practices in dry season

- Fertilize lightly
- Shoot thin heavily

- Reduce weed growth and active cover crop
- Check the efficiency of irrigation systems

Thanks

Dr. Daniel Ward.